

Accuracy of the ytterbium-faecal index method for estimating intake of pasture-fed dairy goats

Rémy DELAGARDE ¹, Nina BELARBRE ¹, Alexia CHARPENTIER ^{1,2}

¹ INRA PEGASE, Saint-Gilles, France ² INRA FERLUS, Lusignan, France

INTRODUCTION

- ► ↑ grazing could increase sustainability of goat production systems

 Farmers not confident on the ability of grazing systems to feed goats
- Scarce references on goat intake regulation at grazing Need for an accurate method for measuring pasture intake to study effects of grazing management

OBJECTIVE

To validate (indoors) a method for estimating intake of goats (at grazing)

- with varying: sward composition
 - intake level (grazing management)
 - concentrate supplementation level

Selected method: « faecal output / faecal index method »

$$I = F / (1 - D)$$

Dilution of an indigestible external marker (Yb)

Multiple regression from faecal and diet nitrogen concentrations

MATERIALS AND METHODS

▶ Four indoors experiments

	Exp 1	Exp 2	Ехр 3	Exp 4
	2014	2015	2016	2016
Forage	Hay	Grass	Grass	MSS
Season	Spring	Autumn	Spring	Spring
Milkings/day	0	1	2	2
Goats / exp	6	6	6	6
Periods (14 days)	4	3	3	3

3 factors studied (2 / exp) :

Feeding level \rightarrow ad lib vs. 80% of ad lib

Supplementation \rightarrow 0 vs. 600 g concentrate/d

Age of regrowth \rightarrow leafy (20-30 d) vs. stemmy (40-50 d)

Ytterbium given twice daily (0.15 g/goat/d)

Measurements and data analyses

- ► Measurements (5-d): Feeds offered + refused Faecal output (total collection)
 - → Actual intake and in vivo diet digestibility

Estimation of Intake, Faecal output, Digestibility as at grazing

From:
$$D_{yb} + [F_{YB}] + [F_{CP}] + [D_{CP}]$$

- ► Mean Prediction Error (MPE)

 (Bibby and Toutenburg, 1977)
 - = distance to the first bisector

RESULTS

Global database : n = 72 goat × week

Pasture intake (kg DM/d)

Actual: 1.51 ± 0.55 Estimated: 1.52 ± 0.58

MPE: 0.11 kg DM/d \rightarrow 7.4%

Good accuracy independently of

- experiment
- treatment within experiment

RESULTS

$$I = F / (1 - D)$$

Faecal output (kg OM/d)

Actual: 0.38 ± 0.09 Estimated: 0.37 ± 0.09

MPE: $0.027 \text{ kg OM/d} \rightarrow 7.1\%$

Yb faecal recovery: 1.01 ± 0.069

Unbiased prediction of Faecal Ouput

RESULTS

$$I = F / (1 - D)$$

Diet OM digestibility (g/g)

Actual: 0.762 ± 0.055 Estimated: 0.762 ± 0.052

MPE: $0.018 \rightarrow 2.4\%$

 \rightarrow 7.3% for 1 / (1 - OMD)

Effects of factors tested well predicted from the equation

CONCLUSIONS

- ► Good accuracy of the Yb-faecal index method for estimating pasture intake
 - Faecal output estimated with no bias.
 - In vivo digestibility well estimated from faecal composition.
- ► Method suitable for measuring pasture intake of grazing dairy goats on multispecies swards and supplemented or not with concentrate.

